Updating the complexity status of coloring graphs without a fixed induced linear forest
نویسندگان
چکیده
A graph is H-free if it does not contain an induced subgraph isomorphic to the graph H. The graph Pk denotes a path on k vertices. The `-Coloring problem is the problem to decide whether a graph can be colored with at most ` colors such that adjacent vertices receive different colors. We show that 4-Coloring is NP-complete for P8free graphs. This improves a result of Le, Randerath, and Schiermeyer, who showed that 4-Coloring is NP-complete for P9-free graphs, and a result of Woeginger and Sgall, who showed that 5-Coloring is NPcomplete for P8-free graphs. Additionally, we prove that the precoloring extension version of 4-Coloring is NP-complete for P7-free graphs, but that the precoloring extension version of 3-Coloring can be solved in polynomial time for (P2 + P4)-free graphs, a subclass of P7-free graphs. Here P2 + P4 denotes the disjoint union of a P2 and a P4. We denote the disjoint union of s copies of a P3 by sP3 and involve Ramsey numbers to prove that the precoloring extension version of 3-Coloring can be solved in polynomial time for sP3-free graphs for any fixed s. Combining our last two results with known results yields a complete complexity classification of (precoloring extension of) 3-Coloring for H-free graphs when H is a fixed graph on at most 6 vertices: the problem is polynomial-time solvable if H is a linear forest; otherwise it is NP-complete.
منابع مشابه
k-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملOn the parameterized complexity of coloring graphs in the absence of a linear forest
The k-Coloring problem is to decide whether a graph can be colored with at most k colors such that no two adjacent vertices receive the same color. The List k-Coloring problem requires in addition that every vertex u must receive a color from some given set L(u) ⊆ {1, . . . , k}. Let Pn denote the path on n vertices, and G + H and rH the disjoint union of two graphs G and H and r copies of H, r...
متن کاملChoosability on H-free graphs
A graph is H-free if it has no induced subgraph isomorphic to H. We determine the computational complexity of the Choosability problem restricted to H-free graphs for every graph H that does not belong to {K1,3, P1 +P2, P1 +P3, P4}. We also show that if H is a linear forest, then the problem is fixed-parameter tractable when parameterized by k.
متن کاملColoring Graphs Characterized by a Forbidden Subgraph
The Coloring problem is to test whether a given graph can be colored with at most k colors for some given k, such that no two adjacent vertices receive the same color. The complexity of this problem on graphs that do not contain some graph H as an induced subgraph is known for each fixed graph H. A natural variant is to forbid a graph H only as a subgraph. We call such graphs strongly H-free an...
متن کاملCitation for Published Item: Use Policy
The k-Coloring problem is to test whether a graph can be colored with at most k colors such that no two adjacent vertices receive the same color. If a graph G does not contain a graph H as an induced subgraph, then G is called H-free. For any fixed graph H on at most 6 vertices, it is known that 3-Coloring is polynomial-time solvable on H-free graphs whenever H is a linear forest and NP-complet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 414 شماره
صفحات -
تاریخ انتشار 2012